『徳島大学 教育・研究者情報データベース (EDB)』---[学外] /
ID: Pass:

登録内容 (EID=303471)

EID=303471EID:303471, Map:0, LastModified:2022年5月5日(木) 21:07:17, Operator:[[ADMIN]], Avail:TRUE, Censor:0, Owner:[永田 裕一], Read:継承, Write:継承, Delete:継承.
種別 (必須): 学術論文 (審査論文) [継承]
言語 (必須): 日本語 [継承]
招待 (推奨):
審査 (推奨):
カテゴリ (推奨):
共著種別 (推奨):
学究種別 (推奨):
組織 (推奨):
著者 (必須): 1. (英) (日) 濱田 直希 (読)
役割 (任意):
貢献度 (任意):
学籍番号 (推奨):
[継承]
2.永田 裕一 ([徳島大学.大学院社会産業理工学研究部.理工学域.知能情報系.情報工学分野]/[徳島大学.理工学部.理工学科.知能情報コース.情報工学講座])
役割 (任意):
貢献度 (任意):
学籍番号 (推奨):
[継承]
3. (英) (日) 小林 重信 (読)
役割 (任意):
貢献度 (任意):
学籍番号 (推奨):
[継承]
4.小野 功
役割 (任意):
貢献度 (任意):
学籍番号 (推奨):
[継承]
題名 (必須): (英) BS-AWA: A More Scalable Adaptive Weighted Aggregation for Continuous Multiobjective Optimization  (日) BS-AWA: Adaptive Weighted Aggregationの目的数に対するスケーラビリティの向上   [継承]
副題 (任意):
要約 (任意): (英) This paper proposes a more scalable variant of Adaptive Weighted Aggregation (AWA) with respect to the number of objectives in continuous multiobjective optimization. AWA is a scalarization-based multi-start strategy for generating finite points that approximate the entire Pareto set and Pareto front, which is especially focused on many-objective problems (having four or more objectives). In our last study, we discussed a reasonable stopping criterion for AWA, the <em>representing iteration</em>, and analyzed the time and space complexity of AWA when the representing iteration is used as a stopping criterion. Theoretical and empirical results showed that the running time and memory consumption of AWA depends on the number of solutions found in the representing iteration, the <em>representing number</em>. Due to the factorial increase of the representing number for objectives, the applicability of AWA is limited to 16-objective problems. In this study, we therefore redesign two central operations in AWA, the <em>subdivision</em> and the <em>relocation</em>, in order to reduce the representing number. The new subdivision is based on the simplicial complex and its barycentric subdivision and the new relocation is based on the simplicial approximation of a mapping and its range, both of which are well-known notions in topology. We theoretically compare the new AWA, named the <em>barycentric subdivision-based AWA (BS-AWA)</em>, with the old AWA in terms of their representing iteration, representing number and approximate memory consumption to illustrate the improvement of scalability; the result implies that BS-AWA is applicable to over 20-objective problems. Numerical experiments using 2- to 17-objective benchmark problems show that BS-AWA achieves a better coverage of obtained solutions than conventional multi-start descent methods in both the variable and objective spaces. The running time and the solution distribution of BS-AWA are also discussed.  (日)    [継承]
キーワード (推奨): 1. (英) multi-objective optimization (日) (読) [継承]
2. (英) continuous optimization (日) (読) [継承]
3. (英) scalarization (日) (読) [継承]
4. (英) multi-start search (日) (読) [継承]
5. (英) weight adaptation (日) (読) [継承]
発行所 (推奨): (英) The Japanese Society for Evolutionary Computation (日) 進化計算学会 (読) [継承]
誌名 (必須): 進化計算学会論文誌 (進化計算学会)
(eISSN: 2185-7385)

ISSN (任意): 2185-7385
ISSN: 2185-7385 (eISSN: 2185-7385)
Title: 進化計算学会論文誌
Supplier: 進化計算学会
 (J-STAGE (No Scopus information.)
[継承]
[継承]
(必須): 5 [継承]
(必須): 1 [継承]
(必須): 1 15 [継承]
都市 (任意):
年月日 (必須): 西暦 2014年 4月 初日 (平成 26年 4月 初日) [継承]
URL (任意): https://ci.nii.ac.jp/naid/130004965149/ [継承]
DOI (任意): 10.11394/tjpnsec.5.1    (→Scopusで検索) [継承]
PMID (任意):
CRID (任意): 1390282680342337152 [継承]
NAID : 130004965149 [継承]
WOS (任意):
Scopus (任意):
評価値 (任意):
被引用数 (任意):
指導教員 (推奨):
備考 (任意):

標準的な表示

和文冊子 ● 濱田 直希, 永田 裕一, 小林 重信, 小野 功 : BS-AWA: Adaptive Weighted Aggregationの目的数に対するスケーラビリティの向上, 進化計算学会論文誌, Vol.5, No.1, 1-15, 2014年.
欧文冊子 ● 濱田 直希, Yuichi Nagata, 小林 重信 and Isao Ono : BS-AWA: A More Scalable Adaptive Weighted Aggregation for Continuous Multiobjective Optimization, Transaction of the Japanese Society for Evolutionary Computation, Vol.5, No.1, 1-15, 2014.

関連情報

Number of session users = 0, LA = 0.28, Max(EID) = 414722, Max(EOID) = 1119481.