『徳島大学 教育・研究者情報データベース (EDB)』---[学外] /
ID: Pass:

登録内容 (EID=182628)

EID=182628EID:182628, Map:[2008/微分方程式特論], LastModified:2009年2月9日(月) 00:48:13, Operator:[深貝 暢良], Avail:TRUE, Censor:0, Owner:[[教務委員会委員]/[徳島大学.工学部.工学基礎教育センター]], Read:継承, Write:継承, Delete:継承.
種別 (必須): 先端技術科学教育部 (授業概要) [継承]
入学年度 (必須): 西暦 2009年 (平成 21年) [継承]
名称 (必須): (英) Differential Equations (日) 微分方程式特論 (読) びぶんほうていしきとくろん
[継承]
形態 (推奨): 1.講義 [継承]
コース (必須): 1.2009/[徳島大学.先端技術科学教育部.知的力学システム工学専攻.建設創造システム工学コース]/[博士前期課程] [継承]
担当教員 (必須): 1.深貝 暢良
肩書 (任意):
[継承]
単位 (必須): 2 [継承]
目的 (必須): (英) Introduction to mathematical theory of differential equations.  (日) 数理物理に現れる線形微分方程式の数学的な扱いを学ぶ.   [継承]
概要 (必須): (英) Boundary value problems of second order linear differential equations.  (日) 微分方程式の境界値問題について,具体的な計算を提示しながら,基本的な概念を解説する.本科目は,工業に関する科目である.   [継承]
キーワード (推奨): 1. (英) (日) 微分方程式の境界値問題 (読) [継承]
2. (英) (日) Sturm-Liouville 問題 (読) [継承]
先行科目 (推奨):
関連科目 (推奨):
要件 (任意):
注意 (任意):
目標 (必須): 1.(英) To be familiar with Sturm-Louville type equations.  (日) 微分方程式の初等解法のつぎの段階として,Sturm-Liouville 問題の入門的な部分を経験する.  
[継承]
計画 (必須): 1.(英) Introduction  (日) はじめに  
[継承]
2.(英) Helmholtz's equation  (日) Helmholtz の方程式  
[継承]
3.(英) Eigenvalues and eigenfunctions  (日) 固有値,固有関数  
[継承]
4.(英) Green's function  (日) Green 関数  
[継承]
5.(英) Residue analysis  (日) 留数定理の復習  
[継承]
6.(英) Expansion of Green's function  (日) Green 関数の展開  
[継承]
7.(英) Fourier series  (日) Fourier 級数  
[継承]
8.(英) Existence theorem  (日) 初期値問題の解の存在と一意性  
[継承]
9.(英) Sturm-Liouville problems  (日) Sturm-Liouville 問題  
[継承]
10.(英) Characteristic function  (日) 特性関数  
[継承]
11.(英) Solvability of boundary value problems  (日) 境界値問題の可解性  
[継承]
12.(英) Basic estimates  (日) 特性関数の漸近的性質  
[継承]
13.(英) Distribution of eigenvalues  (日) 固有値の存在  
[継承]
14.(英) Eigenfunction expansion  (日) 固有関数展開  
[継承]
15.(英) Review  (日) まとめ  
[継承]
評価 (必須): (英) Evaluation will be based on assignments.  (日) レポートにより評価する.   [継承]
再評価 (必須):
対象学生 (任意): 他学科学生も履修可能 [継承]
教科書 (必須):
参考資料 (推奨): 1.(英)   (日) 望月清·トルシン 『数理物理の微分方程式』 培風館   [継承]
URL (任意):
連絡先 (推奨): 1. (英) (日) 工学部数学教室 (A棟219室) (読)
オフィスアワー (任意):
[継承]
科目コード (推奨):
備考 (任意):

●この色で表示されている項目はマップによって参照された内容です.

マップを行っている情報の編集について

マップによって参照している箇所を修正する場合には,次のようにしてください.
  • マップ先の記述とこの情報の記述を同時に修正する場合.
    →マップ先の情報(
        →閲覧 【授業概要】(2008/微分方程式特論)
            →閲覧 【授業概要】(2007/微分方程式特論)
                →閲覧 【授業概要】(2006/微分方程式特論)
    )で編集を行なってください.
  • マップ先の記述は変更せずこの情報のみを変更する場合.
    →この頁で編集を行なってください.
    [注意] 編集画面では,マップによる参照によって得た内容は表示されません.
    [注意] 参照は同じ名前の項目がある場合に行なわれます.
    [注意] 項目を無記入にすると参照が行なわれ,それ以外には参照が行なわれません.(項目単位)

この情報を取り巻くマップ

閲覧 【授業概要】(2008/微分方程式特論) 閲覧 【授業概要】(2009/微分方程式特論) 閲覧 【授業概要】(2010/微分方程式特論)

標準的な表示

和文冊子 ● 微分方程式特論 / Differential Equations
欧文冊子 ● Differential Equations / 微分方程式特論

関連情報

この情報を参照している情報

閲覧【教育プログラム】…(2) 閲覧【授業概要】…(2) 閲覧【担当授業】…(2)

この情報をマップしている情報

閲覧【授業概要】…(2)
Number of session users = 0, LA = 0.64, Max(EID) = 415542, Max(EOID) = 1123684.