○種別 (必須): | □ | 学術論文 (審査論文)
| [継承] |
○言語 (必須): | □ | 日本語
| [継承] |
○招待 (推奨): |
○審査 (推奨): | □ | Peer Review
| [継承] |
○カテゴリ (推奨): | □ | 研究
| [継承] |
○共著種別 (推奨): | □ | 単独著作 (徳島大学内の単一の研究グループ(研究室等)内の研究 (単著も含む))
| [継承] |
○学究種別 (推奨): |
○組織 (推奨): |
○著者 (必須): | 1. | (英) Terao Keiichiro (日) 寺尾 圭一郎 (読) てらお けいいちろう
○役割 (任意): |
○貢献度 (任意): |
○学籍番号 (推奨): | □ | ****
| [ユーザ] |
| [継承] |
| 2. | 小野 典彦
○役割 (任意): |
○貢献度 (任意): |
○学籍番号 (推奨): |
| [継承] |
| 3. | 永田 裕一 ([徳島大学.大学院社会産業理工学研究部.理工学域.知能情報系.情報工学分野]/[徳島大学.理工学部.理工学科.知能情報コース.情報工学講座])
○役割 (任意): |
○貢献度 (任意): |
○学籍番号 (推奨): |
| [継承] |
○題名 (必須): | □ | (英) Parallelization of GA-EAX using Identical Population in all Processes (日) 全プロセスによる同一集団を維持したGA-EAXの並列化
| [継承] |
○副題 (任意): |
○要約 (任意): | □ | (英) One of the most powerful approximation solution methods for the traveling salesman problem (TSP) is a genetic algorithm using edge assembly crossover (GA-EAX), which has found best-known tours to several 100 thousand points scale TSP instances. However, due to the nature of multi-point search, in many cases GAs take more computation time than local search-based algorithms, and it is difficult to fully exercise the capability of GA-EAX for very large TSP instances having more than 1 million points within a reasonable computation time. In this research, we introduce a MPI parallel implementation of GA-EAX. However, in a naive master slave method, the communication costs between the processes are too high to obtain the effect of parallelization sufficiently. So, we introduce a method to reduce the amount of communication between processes to avoid this problem. We also introduce a MPI/thread hybrid parallel implementation of GA-EAX where each MPI process is executed using multiple threads. Experimental results show that the hybrid parallel model achieved up to 29.4 times speedup using 16 PCs, each with 4 cores. (日)
| [継承] |
○キーワード (推奨): | 1. | (英) traveling salesman problem (日) (読)
| [継承] |
| 2. | (英) genetic algorithm (日) (読)
| [継承] |
| 3. | (英) EAX (日) (読)
| [継承] |
| 4. | (英) parallel computing (日) (読)
| [継承] |
○発行所 (推奨): | □ | (英) The Japanese Society for Evolutionary Computation (日) 進化計算学会 (読)
| [継承] |
○誌名 (必須): | □ | 進化計算学会論文誌 (進化計算学会)
(eISSN: 2185-7385)
○ISSN (任意): | □ | 2185-7385
ISSN: 2185-7385
(eISSN: 2185-7385) Title: 進化計算学会論文誌Supplier: 進化計算学会 (J-STAGE)
(No Scopus information.)
| [継承] |
| [継承] |
○巻 (必須): | □ | 8
| [継承] |
○号 (必須): | □ | 3
| [継承] |
○頁 (必須): | □ | 100 110
| [継承] |
○都市 (任意): |
○年月日 (必須): | □ | 西暦 2018年 4月 初日 (平成 30年 4月 初日)
| [継承] |
○URL (任意): | □ | https://ci.nii.ac.jp/naid/130006668421/
| [継承] |
○DOI (任意): | □ | 10.11394/tjpnsec.8.100 (→Scopusで検索)
| [継承] |
○PMID (任意): |
○CRID (任意): | □ | 1390001205364382848
| [継承] |
○NAID : | □ | 130006668421
| [継承] |
○WOS (任意): |
○Scopus (任意): |
○評価値 (任意): |
○被引用数 (任意): |
○指導教員 (推奨): | 1. | 永田 裕一 ([徳島大学.大学院社会産業理工学研究部.理工学域.知能情報系.情報工学分野]/[徳島大学.理工学部.理工学科.知能情報コース.情報工学講座])
| [継承] |
○備考 (任意): |