○種別 (必須): | □ | 学術論文 (審査論文)
| [継承] |
○言語 (必須): | □ | 日本語
| [継承] |
○招待 (推奨): |
○審査 (推奨): |
○カテゴリ (推奨): |
○共著種別 (推奨): |
○学究種別 (推奨): |
○組織 (推奨): |
○著者 (必須): | 1. | (英) (日) 秋本 洋平 (読)
○役割 (任意): |
○貢献度 (任意): |
○学籍番号 (推奨): |
| [継承] |
| 2. | 永田 裕一 ([徳島大学.大学院社会産業理工学研究部.理工学域.知能情報系.情報工学分野]/[徳島大学.理工学部.理工学科.知能情報コース.情報工学講座])
○役割 (任意): |
○貢献度 (任意): |
○学籍番号 (推奨): |
| [継承] |
| 3. | (英) (日) 佐久間 淳 (読)
○役割 (任意): |
○貢献度 (任意): |
○学籍番号 (推奨): |
| [継承] |
| 4. | (英) (日) 小野 功 (読)
○役割 (任意): |
○貢献度 (任意): |
○学籍番号 (推奨): |
| [継承] |
| 5. | (英) (日) 小林 重信 (読)
○役割 (任意): |
○貢献度 (任意): |
○学籍番号 (推奨): |
| [継承] |
○題名 (必須): | □ | (英) Proposal and Evaluation of Adaptive Real-coded Crossover AREX (日) 適応的実数値交叉 AREX の提案と評価
| [継承] |
○副題 (任意): |
○要約 (任意): | □ | (英) Since once premature convergence happens evolutionary algorithms for function optimization can no longer explore areas of the search space and fail to find the optimum, it is required to handle the notorious drawback. This paper proposes two novel approaches to overcome premature convergence of real-coded genetic algorithms (RCGAs). The first idea is to control the sampling region of crossover by adaptation of expansion rate. The second idea is to cause the acceleration of the movement of population by descending the mean of crossover. Finally, we propose a crossover that combines the adaptation of expansion rate technique and the crossover mean descent technique, called AREX (adaptive real-coded ensemble crossover). The performance of the real-coded GA using AREX is evaluated on several benchmark functions including functions whose landscape forms ridge structure or multi-peak structure, both of which are likely to lead to the miserable convergence phenomenon. The experimental results show not only that the proposed method can locate the global optima of functions on which it is difficult for the existing GAs to discover it but also that our approach outperforms the existing one in number of function evaluations on all functions. Our approach enlarges the classes of functions that real-coded GAs can solve. (日)
| [継承] |
○キーワード (推奨): | 1. | (英) function optimization (日) (読)
| [継承] |
| 2. | (英) adaptation of expansion rate (日) (読)
| [継承] |
| 3. | (英) crossover mean descent (日) (読)
| [継承] |
| 4. | (英) adaptive real-coded ensemble crossover (日) (読)
| [継承] |
○発行所 (推奨): | □ | (英) The Japanese Society for Artificial Intelligence (日) (読)
| [継承] |
○誌名 (必須): | □ | 人工知能学会論文誌 ([社団法人 人工知能学会])
(pISSN: 1346-0714, eISSN: 1346-8030)
○ISSN (任意): | □ | 1346-0714
ISSN: 1346-0714
(pISSN: 1346-0714, eISSN: 1346-8030) Title: Transactions of the Japanese Society for Artificial Intelligence = Jinko Chino Gakkai ronbunshiTitle(ISO): Trans Jpn Soc Artif IntellSupplier: 一般社団法人 人工知能学会Publisher: Japanese Society for Artificial Intelligence (NLM Catalog)
(J-STAGE)
(Scopus)
(CrossRef)
(Scopus information is found. [need login])
| [継承] |
| [継承] |
○巻 (必須): | □ | 24
| [継承] |
○号 (必須): | □ | 6
| [継承] |
○頁 (必須): | □ | 446 458
| [継承] |
○都市 (任意): |
○年月日 (必須): | □ | 西暦 2009年 11月 初日 (平成 21年 11月 初日)
| [継承] |
○URL (任意): | □ | http://ci.nii.ac.jp/naid/130000137880/
| [継承] |
○DOI (任意): | □ | 10.1527/tjsai.24.446 (→Scopusで検索)
| [継承] |
○PMID (任意): |
○CRID (任意): | □ | 1390001205108974592
| [継承] |
○NAID : | □ | 130000137880
| [継承] |
○WOS (任意): |
○Scopus (任意): | □ | 2-s2.0-70350128255
| [継承] |
○評価値 (任意): |
○被引用数 (任意): |
○指導教員 (推奨): |
○備考 (任意): |