『徳島大学 教育・研究者情報データベース (EDB)』---[学外] /
ID: Pass:

登録内容 (EID=262287)

EID=262287EID:262287, Map:0, LastModified:2014年11月26日(水) 10:06:00, Operator:[森 篤史], Avail:TRUE, Censor:0, Owner:[森 篤史], Read:継承, Write:継承, Delete:継承.
種別 (必須): 学術論文 (審査論文) [継承]
言語 (必須): 英語 [継承]
招待 (推奨):
審査 (推奨): Peer Review [継承]
カテゴリ (推奨): 研究 [継承]
共著種別 (推奨):
学究種別 (推奨):
組織 (推奨): 1.徳島大学.大学院ソシオテクノサイエンス研究部.先進物質材料部門.知的材料システム (2006年4月1日〜2016年3月31日) [継承]
著者 (必須): 1.森 篤史
役割 (任意):
貢献度 (任意):
学籍番号 (推奨):
[継承]
題名 (必須): (英) Volume term of work of critical nucleus formation in terms of chemical potential difference relative to equilibrium one  (日)    [継承]
副題 (任意):
要約 (任意): (英) The work of formation of a critical nucleus is sometimes written as W=n{Delta}{mu}+{gamma}A. The first term W_{vol} = n{Delta}{mu} is called the volume term and the second term {gamma}A the surface term with {gamma} being the interfacial tension and A the area of the nucleus. Nishioka and Kusaka [J. Chem. Phys. 96 (1992) 5370] derived W_{vol}=n{Delta}{mu} with n=V_{beta}/v_{beta} and {Delta}{mu}={mu}_{beta}(T,p_{alpha})-{mu}_{alpha}(T,p_{alpha}) by rewriting W_{vol}=-(p_{beta}-p_{alpha})V_{beta} by integrating the isothermal Gibbs-Duhem relation for an incompressible {beta} phase, where {alpha} and {beta} represent the parent and nucleating phases, V_{beta} is the volume of the nucleus, v_{beta}, which is constant, the molecular volume of the {beta} phase, {mu}, T, and p denote the chemical potential, the temperature, and the pressure, respectively. We note here that {Delta}{mu}={mu}_{beta}(T,p_{alpha})-{mu}_{alpha}(T,p_{alpha}) is, in general, not a directly measurable quantity. In this paper, we have rewritten W_{vol}=-(p_{beta}-p_{alpha})V_{beta} in terms of {mu}_{re}-{mu}_{eq}, where {mu}_{re} and {mu}_{eq} are the chemical potential of the reservoir (equaling that of the real system, common to the {alpha} and {beta} phases) and that at equilibrium. Here, the quantity {mu}_{re}-{mu}_{eq} is the directly measurable supersaturation. The obtained form is similar to but slightly different from W_{vol}=n{Delta}{mu}.  (日)    [継承]
キーワード (推奨): 1. (英) cluster formation work (日) (読) [継承]
2. (英) Gibbs formula (日) (読) [継承]
3. (英) volume term (日) (読) [継承]
4. (英) nΔμ (日) (読) [継承]
発行所 (推奨): Elsevier Science [継承]
誌名 (必須): Journal of Crystal Growth ([Elsevier])
(pISSN: 0022-0248)

ISSN (任意): 0022-0248
ISSN: 0022-0248 (pISSN: 0022-0248)
Title: Journal of crystal growth
Title(ISO): J Cryst Growth
Publisher: Elsevier BV
 (NLM Catalog  (Scopus  (CrossRef (Scopus information is found. [need login])
[継承]
[継承]
(必須): 377 [継承]
(必須): 1 [継承]
(必須): 118 122 [継承]
都市 (任意):
年月日 (必須): 西暦 2013年 8月 15日 (平成 25年 8月 15日) [継承]
URL (任意): http://www.sciencedirect.com/science/article/pii/S0022024813003278 [継承]
DOI (任意): 10.1016/j.jcrysgro.2013.05.001    (→Scopusで検索) [継承]
PMID (任意):
NAID (任意):
WOS (任意):
Scopus (任意):
評価値 (任意):
被引用数 (任意):
指導教員 (推奨):
備考 (任意):

標準的な表示

和文冊子 ● Atsushi Mori : Volume term of work of critical nucleus formation in terms of chemical potential difference relative to equilibrium one, Journal of Crystal Growth, Vol.377, No.1, 118-122, 2013.
欧文冊子 ● Atsushi Mori : Volume term of work of critical nucleus formation in terms of chemical potential difference relative to equilibrium one, Journal of Crystal Growth, Vol.377, No.1, 118-122, 2013.

関連情報

Number of session users = 2, LA = 0.40, Max(EID) = 383335, Max(EOID) = 1024622.