『徳島大学 教育・研究者情報データベース (EDB)』---[学外] /
ID: Pass:

登録内容 (EID=209831)

EID=209831EID:209831, Map:0, LastModified:2017年11月27日(月) 18:34:57, Operator:[大家 隆弘], Avail:TRUE, Censor:0, Owner:[任 福継], Read:継承, Write:継承, Delete:継承.
種別 (必須): 学術論文 (審査論文) [継承]
言語 (必須): 英語 [継承]
招待 (推奨):
審査 (推奨): Peer Review [継承]
カテゴリ (推奨): 研究 [継承]
共著種別 (推奨):
学究種別 (推奨): 博士後期課程学生による研究報告 [継承]
組織 (推奨): 1.徳島大学.大学院ソシオテクノサイエンス研究部.情報ソリューション部門.感性情報処理 (2006年4月1日〜2016年3月31日) [継承]
著者 (必須): 1.Quan Changqin
役割 (任意):
貢献度 (任意):
学籍番号 (推奨):
[継承]
2.任 福継 ([徳島大学.大学院社会産業理工学研究部.理工学域.知能情報系.情報工学分野]/[徳島大学.理工学部.理工学科.情報光システムコース.情報工学講座]/->個人[中川 福継])
役割 (任意):
貢献度 (任意):
学籍番号 (推奨):
[継承]
3. (英) He Tingting (日) (読)
役割 (任意):
貢献度 (任意):
学籍番号 (推奨):
[継承]
題名 (必須): (英) Sentimental Classification based on Kernel Methods and Domain Semantic Orientation Dictionaries  (日)    [継承]
副題 (任意):
要約 (任意): (英) Kernel-based algorithms exploit the document information encoded in the inner-product between all pairs of document data items, avoiding explicitly the computation of the feature vector for a given input, therefore it gets considerable attention in classification tasks. In this paper, we focus our attention on the problem of sentimental classification based on three kernel methods: latent semantic kernel (LSK), polynomial kernel (PK), and Gaussian kernel (GK). It is well known that LSK has good performance in text classification, but it has relative low efficiency because of the process of the SVD decomposition, especially runs on large corpora. Our experiments demonstrate that PK has higher precision and efficiency compared with LSK and GK for the problem of sentimental classification. In particular, we compared the performances on different semantic orientation dictionaries, and found that the domain semantic orientation dictionaries could enhance the performance greatly. Also, our method could categorize the reviews with different degrees, such as 5-star, 4-star and 1-star by sorting the similarities between the reviews and the semantic orientation dictionaries. In our method, tagged corpus and certain rules are not necessary, so it is practical and has high efficiency.  (日)    [継承]
キーワード (推奨): 1. (英) Sentimental classification (日) (読) [継承]
2. (英) Kernel methods (日) (読) [継承]
3. (英) Semantic orientation dictionaries (日) (読) [継承]
発行所 (推奨): (英) ICIC International (日) (読) [継承]
誌名 (必須): International Journal of Innovative Computing, Information and Control (ICIC International)
(pISSN: 1349-4198)

ISSN (任意): 1349-4198
ISSN: 1349-4198 (pISSN: 1349-4198)
Title: International Journal of Innovative Computing, Information and Control
Publisher: Kyushu Tokai University
 (Scopus (Scopus information is found. [need login])
[継承]
[継承]
(必須): 6 [継承]
(必須): 6 [継承]
(必須): 2681 2690 [継承]
都市 (任意):
年月日 (必須): 西暦 2010年 6月 初日 (平成 22年 6月 初日) [継承]
URL (任意):
DOI (任意):
PMID (任意):
NAID (任意):
WOS (任意): 000278688700024 [継承]
Scopus (任意): 2-s2.0-80052475171 [継承]
評価値 (任意):
被引用数 (任意):
指導教員 (推奨):
備考 (任意):

標準的な表示

和文冊子 ● Changqin Quan, Fuji Ren and Tingting He : Sentimental Classification based on Kernel Methods and Domain Semantic Orientation Dictionaries, International Journal of Innovative Computing, Information and Control, Vol.6, No.6, 2681-2690, 2010.
欧文冊子 ● Changqin Quan, Fuji Ren and Tingting He : Sentimental Classification based on Kernel Methods and Domain Semantic Orientation Dictionaries, International Journal of Innovative Computing, Information and Control, Vol.6, No.6, 2681-2690, 2010.

関連情報

Number of session users = 0, LA = 0.30, Max(EID) = 383878, Max(EOID) = 1026713.