『徳島大学 教育・研究者情報データベース (EDB)』---[学外] /
ID: Pass:
  (見出し語句検索:)

登録情報

抽出条件

REF=閲覧 学習アルゴリズム (learning algorithm)

登録情報の数

有効な情報: 37件 + 無効な情報: 0件 = 全ての情報: 37件

全ての有効な情報 (37件)
  (見出し語句検索:)

条件追加

[種別](著作の種別)による分類 :
[言語](著作の言語)による分類 :
[カテゴリ](著作のカテゴリ)による分類 :
[共著種別](共著の種別)による分類 :
[学究種別](著作の学究種別)による分類 :
[組織](著作の帰属する組織)による分類 :
閲覧 閲覧 徳島大学 …(36)
閲覧 閲覧 徳島大学 …(36)
閲覧 (未定義) …(1)
[年月日](発行年月日)による分類
○ 年による分類 :
○ 年度による分類 :

抽出結果のリスト

排列順: 項目表示:
閲覧 最上 義夫, 馬場 則夫, 石留 敬典 : 各レベルにS-モデル非定常環境をもつ可変階層構造学習オートマトン, 計測自動制御学会論文集, Vol.34, No.11, 1706-1714, 1998年..[キーワード] ...
閲覧 最上 義夫, 馬場 則夫 : 各レベルに複数定常環境をもつ可変階層構造学習オートマトン, 計測自動制御学会論文集, Vol.36, No.4, 356-363, 2000年..[キーワード] ...
閲覧 最上 義夫, 馬場 則夫, 廣永 哲也 : 各レベルに定常環境をもつ可変階層構造学習オートマトンのための離散値型学習アルゴリズム, 計測自動制御学会論文集, Vol.36, No.8, 676-683, 2000年..[キーワード] ...
閲覧 Tadashi Kondo and A. S. Pandya : Knowledge-Based Intelligent Information and Engineering Systems 2003 (Eds.V.Palade et al.), pp.849-855, Springer-Verlag Berlin Heidelberg, Berlin, Sep. 2003..[キーワード] ...
閲覧 Tadashi Kondo and A.S. Pandya : Knowledge-Based Intelligent Information and Engineering Systems 2004 (Eds.Mircea Gh. Negoita et al.), pp.1015-1059, Springer-Verlag Berlin Heidelberg, Berlin, Sep. 2004..[キーワード] ...
閲覧 Tadashi Kondo : Neural Information Processing (Eds. M.IshiKawa et al.), pp.882-891, Springer-Verlag Berlin Heidelberg, Berlin, Jan. 2008..[キーワード] ...
閲覧 Tadashi Kondo, Junji Ueno and Shoichiro Takao : Medical image diagnosis of liver cancer by hybrid feedback GMDH-type neural network using principal component-regression analysis, Proceedings of the nineteenth international symposium on artificial life and robotics, 339-342, Beppu, Jan. 2014..[キーワード] ...
閲覧 Tadashi Kondo, Junji Ueno and Shoichiro Takao : Logistic GMDH-type neural network using principal component-regression analysis and its application to medical image diagnosis of lung cancer, Proceedings of the nineteenth international symposium on artificial life and robotics, 335-338, Beppu, Jan. 2014..[キーワード] ...
閲覧 Tadashi Kondo, Junji Ueno and Shoichiro Takao : Hybrid feedback GMDH-type neural network using principal component-regression analysis and its application to medical image recognition of heart regions, Proceedings of inetrnational conference of SCIS and ISIS 2014, 1203-1208, kitakyushu, Dec. 2014..[キーワード] ...
閲覧 Tadashi Kondo, Junji Ueno and Shoichiro Takao : Medical image recognition of abdominal multi-organs by hybrid multi-layered GMDH-type neural network using principal component-regression analysis, Proceedings of 2014 second international symposium on computing and networking, 157-163, Matuyama, Dec. 2014..[キーワード] ...
閲覧 Tadashi Kondo, Junji Ueno and Shoichiro Takao : Deep feedback GMDH-type neural network using principal component-regression analysis and its application to medical image recognition of abdominal multi-organs, The proceedings of international conference on artificial life and robotics (ICAROB 2015), 119-122, Oita, Jan. 2015..[キーワード] ...
閲覧 Tadashi Kondo, Junji Ueno and Shoichiro Takao : Medical image recognition of heart regions by deep multi-layered GMDH-type neural network using principal component-regression analysis, The proceedings of international conference on artificial life and robotics (ICAROB 2015), 115-118, Oita, Jan. 2015..[キーワード] ...
閲覧 Tadashi Kondo, Junji Ueno and Shoichiro Takao : Deep multi-layered GMDH-type neural network using principal component-regression analysis and its application to medical image recognition of brain and blood vessels, Proceedings of the twentieth international symposium on aritificial life and robotics 2015, 92-95, Beppu, Jan. 2015..[キーワード] ...
閲覧 Tadashi Kondo, Junji Ueno and Shoichiro Takao : Medical image diagnosis of kidney regions by deep feedback GMDH-type neural network using principal component-regression analysis, Proceedings of the twentieth international symposium on artificial life and robotics 2015, 424-427, Beppu, Jan. 2015..[キーワード] ...
閲覧 Tadashi Kondo, Junji Ueno and Shoichiro Takao : Logistic GMDH-type neural network using principal component-regression analysis and its application to medical image diagnosis of lung cancer, Artificial Life and Robotics, Vol.20, No.2, 137-144, 2015..[キーワード] ...
閲覧 Tadashi Kondo, Junji Ueno and Shoichiro Takao : Deep feedback GMDH-type neural network using principal component-regression analysis and its application to medical image recognition of abdominal multi-organs, Journal of Robotics Networking and Artificial Life, Vol.2, No.2, 94-99, 2015..[キーワード] ...
閲覧 Tadashi Kondo, Junji Ueno and Shoichiro Takao : Medical image diagnosis of liver cancer by hybrid feedback GMDH-type neural network using principal component-regression analysis, Artificial Life and Robotics, Vol.20, No.2, 145-151, 2015..[キーワード] ...
閲覧 Tadashi Kondo, Junji Ueno and Shoichiro Takao : Medical image analysis of MRI brain images by deep RBF GMDH-type neural network using principal component-regression analysis, Proceedings of 2015 IIAI 4th international congress on advanced informatics, 586-592, Okayama, July 2015..[キーワード] ...
閲覧 Tadashi Kondo, Junji Ueno and Shoichiro Takao : Medical image recognition of heart regions by deep multi-layered GMDH-type neural network using principal component-regression analysis, Journal of Robotics Networking and Artificial Life, Vol.2, No.3, 166-172, 2015..[キーワード] ...
閲覧 Tadashi Kondo, Junji Ueno and Shoichiro Takao : The 3-dimensional medical image recognition of right and left kidneys by deep GMDH-type neural network, Journal of Bioinformatics and Neuroscience, Vol.1, No.1, 14-23, 2015..[キーワード] ...
閲覧 Tadashi Kondo, Junji Ueno and Shoichiro Takao : The 3-dimensional medical image recognition of right and left kidneys by deep GMDH-type neural network, Proceedings of International Conference on Intelligent Informatics and Biomedical Sciences, (巻), (号), 313-320, Okinawa, Dec. 2015..[キーワード] ...
閲覧 Tadashi Kondo, Junji Ueno and Shoichiro Takao : Deep feedback GMDH-type neural network and its application to medical image analysis of MRI brain images, Proceedings of the Twenty-First International Symposium on Artificial Life and Robotics (AROB 21st 2016), (巻), (号), 233-236, Beppu, Jan. 2016..[キーワード] ...
閲覧 Tadashi Kondo, Junji Ueno and Shoichiro Takao : Medical image analysis of abdominal X-ray CT images by deep multi-layered GMDH-type neural network, Proceedings of the Twenty-First International Symposium on Artificial Life and Robotics (AROB 21st 2016), (巻), (号), 237-240, Beppu, Jan. 2016..[キーワード] ...
閲覧 Tadashi Kondo, Junji Ueno and Shoichiro Takao : Medical image diagnosis of lung cancer by deep feedback GMDH-type neural network, The proceedings of the 2016 International Conference on Artificial Life and Robotics (ICAROB 2016), (巻), (号), 125-129, Okinawa, Jan. 2016..[キーワード] ...
閲覧 Tadashi Kondo, Junji Ueno and Shoichiro Takao : Medical image analysis of brain X-ray CT images by deep GMDH-type neural network, The proceedings of the 2016 International Conference on Artificial Life and Robotics (ICAROB 2016), (巻), (号), 120-124, Okinawa, Jan. 2016..[キーワード] ...
閲覧 Tadashi Kondo, Junji Ueno and Shoichiro Takao : Medical image diagnosis of lung cancer by deep feedback GMDH-type neural network, Journal of Robotics Networking and Artificial Life, Vol.2, No.4, 252-257, 2016..[キーワード] ...
閲覧 Tadashi Kondo, Junji Ueno and Shoichiro Takao : Medical image analysis of brain X-ray CT images by deep GMDH-type neural network, Journal of Robotics Networking and Artificial Life, Vol.3, No.1, 17-23, 2016..[キーワード] ...
閲覧 Tadashi Kondo, Sayaka Kondo, Junji Ueno and Shoichiro Takao : Medical image diagnosis of kidney regions by deep feedback GMDH-type neural network using principal component-regression analysis, Artificial Life and Robotics, Vol.22, No.1, 1-9, 2017..[キーワード] ...
閲覧 Tadashi Kondo, Sayaka Kondo, Junji Ueno and Shoichiro Takao : Medical image diagnosis of lung cancer by deep logistic GMDH-type neural network using revised heuristic self-organization, Proceedings of the Twenty-Second International Symposium on Artificial Life and Robotics(AROB 22st 2017), (巻), (号), (頁), Beppu, Jan. 2017..[キーワード] ...
閲覧 Tadashi Kondo, Sayaka Kondo, Junji Ueno and Shoichiro Takao : Medical image diagnosis of liver cancer by deep multi-layered GMDH-type neural network using revised heuristic self-organization, Proceedings of the Twenty-Second International Symposium on Artificial Life and Robotics(AROB 22st 2017), (巻), (号), (頁), Beppu, Jan. 2017..[キーワード] ...
閲覧 髙尾 正一郎, 近藤 明佳, 上野 淳二, 近藤 正 : ディープ多層構造型GMDH-typeニューラルネットワークを用いた肺がんの医用画像診断, 第31回人工知能学会全国大会論文集, No.2J4-2in1, 1-4, 2017年6月..[キーワード] ...
閲覧 髙尾 正一郎, 近藤 明佳, 上野 淳二, 近藤 正 : ディープ多層構造型GMDH-typeニューラルネットワークを用いた肝臓がんの医用画像診断, 医療情報学会・人工知能学会AIM合同研究会資料SIG-AIMED-004-03, No.004-03, 1-6, 2017年11月..[キーワード] ...
閲覧 Shoichiro Takao, Sayaka Kondo, Junji Ueno and Tadashi Kondo : Deep multi-layered GMDH-type neural network using revised heuristic self-organization and its application to medical image diagnosis of liver cancer, Artificial Life and Robotics, Vol.23, No.1, 48-59, 2018..[キーワード] ...
閲覧 Shoichiro Takao, Sayaka Kondo, Junji Ueno and Tadashi Kondo : Hybrid deep neural network of deep multi-layered GMDH-type neural network and convolutional neural network and its application to medical image recognition of spleen regions, Proceedings of the Twenty-Third International Symposium on Artificial Life and Robotics(AROB 23nd 2018), Beppu, Jan. 2018..[キーワード] ...
閲覧 Shoichiro Takao, Sayaka Kondo, Junji Ueno and Tadashi Kondo : Medical image diagnosis of liver cancer by hybrid deep neural network of deep logistic GMDH-type neural network and convolutional neural network, Proceedings of the Twenty-Third International Symposium on Artificial Life and Robotics (AROB 23rd 2018), Beppu, Jan. 2018..[キーワード] ...
閲覧 Shoichiro Takao, Sayaka Kondo, Junji Ueno and Tadashi Kondo : Deep feedback GMDH-type neural network and its application to medical image analysis of MRI brain images, Artificial Life and Robotics, Vol.23, No.2, 161-172, 2018..[キーワード] ...
閲覧 Shoichiro Takao, Sayaka Kondo, Junji Ueno and Tadashi Kondo : Medical image analysis of abdominal X-ray CT images by deep multi-layered GMDH-type neural network, Artificial Life and Robotics, Vol.23, No.2, 271-278, 2018..[キーワード] ...

過去3日以内に登録・変更された情報

(なし)

本データベースでは情報の登録,保守作業の分散を主たる目的の一つとしております.したがって,上記にリストアップされている情報の保守は個々の情報の当事者に委ねられます.

ある情報を保守する義務があるかないかは,その情報に対して権限を持っているかどうかで判断してください.もちろん情報の所有者が主に管理しなくてはならないことになりますが,権限を持っている利用者が連帯してその情報の保守を行なう義務を負っていると考えてください.

貴方がどの情報について権限を持っているかは,貴方自身の情報を閲覧してください.

Number of session users = 0, LA = 0.49, Max(EID) = 374074, Max(EOID) = 1001459.