著作: 加納 洋介/[生島 仁史]/[佐々木 幹治]/[芳賀 昭弘]/Automatic Contour Segmentation of Cervical Cancer using Artificial Intelligence/[Journal of Radiation Research]
ヘルプを読む
「著作」(著作(著書,論文,レター,国際会議など))は,研究業績にかかる著作(著書,論文,レター,国際会議など)を登録するテーブルです. (この情報が属するテーブルの詳細な定義を見る)
- 項目名の部分にマウスカーソルを置いて少し待つと,項目の簡単な説明がツールチップ表示されます.
種別 | 必須 | 学術論文(審査論文) | |||
---|---|---|---|---|---|
言語 | 必須 | 英語 | |||
招待 | 推奨 | ||||
審査 | 推奨 | Peer Review | |||
カテゴリ | 推奨 | ||||
共著種別 | 推奨 | 国内共著(徳島大学内研究者と国内(学外)研究者との共同研究 (国外研究者を含まない)) | |||
学究種別 | 推奨 | ||||
組織 | 推奨 | ||||
著者 | 必須 | ||||
題名 | 必須 |
(英) Automatic Contour Segmentation of Cervical Cancer using Artificial Intelligence |
|||
副題 | 任意 | ||||
要約 | 任意 |
(英) In cervical cancer treatment, radiation therapy is selected based on the degree of tumor progression, and radiation oncologists are required to delineate tumor contours. To reduce the burden on radiation oncologists, an automatic segmentation of the tumor contours would prove useful. To the best of our knowledge, automatic tumor contour segmentation has rarely been applied to cervical cancer treatment. In this study, diffusion-weighted images (DWI) of 98 patients with cervical cancer were acquired. We trained an automatic tumor contour segmentation model using 2D U-Net and 3D U-Net to investigate the possibility of applying such a model to clinical practice. A total of 98 cases were employed for the training, and they were then predicted by swapping the training and test images. To predict tumor contours, six prediction images were obtained after six training sessions for one case. The six images were then summed and binarized to output a final image through automatic contour segmentation. For the evaluation, the Dice similarity coefficient (DSC) and Hausdorff distance (HD) was applied to analyze the difference between tumor contour delineation by radiation oncologists and the output image. The DSC ranged from 0.13 to 0.93 (median 0.83, mean 0.77). The cases with DSC <0.65 included tumors with a maximum diameter < 40 mm and heterogeneous intracavitary concentration due to necrosis. The HD ranged from 2.7 to 9.6 mm (median 4.7 mm). Thus, the study confirmed that the tumor contours of cervical cancer can be automatically segmented with high accuracy. |
|||
キーワード | 推奨 |
|
|||
発行所 | 推奨 | ||||
誌名 | 必須 |
Journal of Radiation Research([日本放射線影響学会])
(pISSN: 0449-3060, eISSN: 1349-9157)
|
|||
巻 | 必須 | 62 | |||
号 | 必須 | 5 | |||
頁 | 必須 | 934 944 | |||
都市 | 任意 | ||||
年月日 | 必須 | 2021年 9月 13日 | |||
URL | 任意 | ||||
DOI | 任意 | 10.1093/jrr/rrab070 (→Scopusで検索) | |||
PMID | 任意 | 34401914 (→Scopusで検索) | |||
CRID | 任意 | ||||
WOS | 任意 | ||||
Scopus | 任意 | ||||
評価値 | 任意 | ||||
被引用数 | 任意 | ||||
指導教員 | 推奨 | ||||
備考 | 任意 |
|