著作: [楠瀬 賢也]/平田 有紀奈/Tsuji T/Kotoku J/[佐田 政隆]/Deep learning to predict elevated pulmonary artery pressure in patients with suspected pulmonary hypertension using standard chest X ray/[Scientific Reports]
ヘルプを読む
「著作」(著作(著書,論文,レター,国際会議など))は,研究業績にかかる著作(著書,論文,レター,国際会議など)を登録するテーブルです. (この情報が属するテーブルの詳細な定義を見る)
- 項目名の部分にマウスカーソルを置いて少し待つと,項目の簡単な説明がツールチップ表示されます.
種別 | 必須 | 学術論文(審査論文) | |||
---|---|---|---|---|---|
言語 | 必須 | 英語 | |||
招待 | 推奨 | ||||
審査 | 推奨 | Peer Review | |||
カテゴリ | 推奨 | ||||
共著種別 | 推奨 | ||||
学究種別 | 推奨 | ||||
組織 | 推奨 | ||||
著者 | 必須 | ||||
題名 | 必須 |
(英) Deep learning to predict elevated pulmonary artery pressure in patients with suspected pulmonary hypertension using standard chest X ray |
|||
副題 | 任意 | ||||
要約 | 任意 |
(英) Accurate diagnosis of pulmonary hypertension (PH) is crucial to ensure that patients receive timely treatment. We hypothesized that application of artificial intelligence (AI) to the chest X-ray (CXR) could identify elevated pulmonary artery pressure (PAP) and stratify the risk of heart failure hospitalization with PH. We retrospectively enrolled a total of 900 consecutive patients with suspected PH. We trained a convolutional neural network to identify patients with elevated PAP (> 20 mmHg) as the actual value of PAP. The endpoints in this study were admission or occurrence of heart failure with elevated PAP. In an independent evaluation set for detection of elevated PAP, the area under curve (AUC) by the AI algorithm was significantly higher than the AUC by measurements of CXR images and human observers (0.71 vs. 0.60 and vs. 0.63, all p < 0.05). In patients with AI predicted PH had 2-times the risk of heart failure with PH compared with those without AI predicted PH. This preliminary work suggests that applying AI to the CXR in high risk groups has limited performance when used alone in identifying elevated PAP. We believe that this report can serve as an impetus for a future large study. |
|||
キーワード | 推奨 | ||||
発行所 | 推奨 | ||||
誌名 | 必須 |
Scientific Reports([Nature Publishing Group])
(eISSN: 2045-2322)
|
|||
巻 | 必須 | 10 | |||
号 | 必須 | 1 | |||
頁 | 必須 | 19311 19311 | |||
都市 | 任意 | ||||
年月日 | 必須 | 2020年 11月 17日 | |||
URL | 任意 | ||||
DOI | 任意 | 10.1038/s41598-020-76359-w (→Scopusで検索) | |||
PMID | 任意 | 33203947 (→Scopusで検索) | |||
CRID | 任意 | ||||
WOS | 任意 | ||||
Scopus | 任意 | ||||
評価値 | 任意 | ||||
被引用数 | 任意 | ||||
指導教員 | 推奨 | ||||
備考 | 任意 |
|