徳島大学 教育・研究者情報データベース(EDB)

Education and Research Database (EDB), Tokushima University

徳島大学ウェブサイトへのリンク

著作: 藤澤 日明/[松本 和幸]/太田 万稀/[吉田 稔]/[北 研二]/異なるタイプの画像コーパスからの転移学習とデータ拡張に基づくアスキーアートのカテゴリ分類/JSKE 第22回日本感性工学会大会講演論文集

ヘルプを読む

「著作」(著作(著書,論文,レター,国際会議など))は,研究業績にかかる著作(著書,論文,レター,国際会議など)を登録するテーブルです. (この情報が属するテーブルの詳細な定義を見る)

  • 項目名の部分にマウスカーソルを置いて少し待つと,項目の簡単な説明がツールチップ表示されます.

この情報をEDB閲覧画面で開く

EID
371229
EOID
991440
Map
0
LastModified
2020年9月9日(水) 15:08:19
Operator
松本 和幸
Avail
TRUE
Censor
0
Owner
松本 和幸
Read
継承
Write
継承
Delete
継承
種別 必須 国内講演発表
言語 必須 日本語
招待 推奨
審査 推奨
カテゴリ 推奨 研究
共著種別 推奨 国内共著(徳島大学内研究者と国内(学外)研究者との共同研究 (国外研究者を含まない))
学究種別 推奨
組織 推奨
著者 必須
  1. (英) Fujisawa Akira / (日) 藤澤 日明
    役割 任意
    貢献度 任意
    学籍番号 推奨
  2. 松本 和幸([徳島大学.大学院社会産業理工学研究部.理工学域.知能情報系.情報工学分野]/[徳島大学.理工学部.理工学科.情報光システムコース.情報工学講座])
    役割 任意
    貢献度 任意
    学籍番号 推奨
  3. (英) Othta Kazuki / (日) 太田 万稀 / (読) おおた かずき
    役割 任意
    貢献度 任意
    学籍番号 推奨 ****
  4. 吉田 稔([徳島大学.大学院社会産業理工学研究部.理工学域.知能情報系.情報工学分野]/[徳島大学.理工学部.理工学科.情報光システムコース.情報工学講座])
    役割 任意
    貢献度 任意
    学籍番号 推奨
  5. 北 研二([徳島大学.大学院社会産業理工学研究部.理工学域.知能情報系.情報工学分野]/[徳島大学.理工学部.理工学科.情報光システムコース.情報工学講座])
    役割 任意
    貢献度 任意
    学籍番号 推奨
題名 必須

(英) ASCII Art Category Classification Based on Transfer Learning and Data Augmentation from Different Types of Image Corpus

(日) 異なるタイプの画像コーパスからの転移学習とデータ拡張に基づくアスキーアートのカテゴリ分類

副題 任意
要約 任意

(英) In this paper, we propose an ASCII art category classification method based on transfer learning and data augmentation.ASCII art is one of the nonverbal expressions that visually express emotions and intentions.There are similar expressions such as emoticons and pictograms. However, most of them are either represented by a single characteror embedded in the statement as an inline expression. ASCII art is expressed in various styles, including dot art illustration and lineart illustration. Basically, ASCII art can represent almost any object, therefore the category of ASCII art is very diverse. Many existing image classification algorithms use color information, however, since most ASCII art is written in character sets, there is no color information available for categorization. Create an ASCII art category classifier using the grayscale edge image and the ASCII art image transformed from the image as a training image set. We also use VGG16, ResNet-50, Inception v3 and Xception's pretrained networks to fine-tune our categorization. As a result of the experiment of fine tuning by VGG16 and data augmentation, an accuracy of 80% or more was obtained in the "human" category.

キーワード 推奨
  1. (英) ASCII art
  2. (英) Transfer learning
  3. (英) Fine tuning
  4. (英) Data augmentation
  5. (英) Domain adaptation
発行所 推奨
誌名 必須 (日) JSKE 第22回日本感性工学会大会講演論文集
ISSN 任意
必須 ---
必須 ---
必須 1 7
都市 必須
年月日 必須 2020年 9月 9日
URL 任意
DOI 任意
PMID 任意
NAID 任意
WOS 任意
Scopus 任意
評価値 任意
被引用数 任意
指導教員 推奨
備考 任意