徳島大学 教育・研究者情報データベース(EDB)

Education and Research Database (EDB), Tokushima University

徳島大学ウェブサイトへのリンク

著作: [楠瀬 賢也]/[阿部 考志]/[芳賀 昭弘]/[福田 大受]/[山田 博胤]/[原田 雅史]/[佐田 政隆]/A Deep Learning Approach for Assessment of Regional Wall Motion Abnormality From Echocardiographic Images/[JACC. Cardiovascular Imaging]

ヘルプを読む

「著作」(著作(著書,論文,レター,国際会議など))は,研究業績にかかる著作(著書,論文,レター,国際会議など)を登録するテーブルです. (この情報が属するテーブルの詳細な定義を見る)

  • 項目名の部分にマウスカーソルを置いて少し待つと,項目の簡単な説明がツールチップ表示されます.

この情報をEDB閲覧画面で開く

EID
363957
EOID
983578
Map
0
LastModified
2020年7月31日(金) 13:26:39
Operator
大家 隆弘
Avail
TRUE
Censor
0
Owner
芳賀 昭弘
Read
継承
Write
継承
Delete
継承
種別 必須 学術論文(審査論文)
言語 必須 英語
招待 推奨
審査 推奨 Peer Review
カテゴリ 推奨 研究
共著種別 推奨 学内共著(徳島大学内研究者との共同研究 (学外研究者を含まない))
学究種別 推奨
組織 推奨
著者 必須
  1. 楠瀬 賢也([徳島大学.病院.診療科.内科.循環器内科])
    役割 任意
    貢献度 任意
    学籍番号 推奨
  2. 阿部 考志
    役割 任意
    貢献度 任意
    学籍番号 推奨
  3. 芳賀 昭弘([徳島大学.大学院医歯薬学研究部.保健学域.保健科学部門.放射線科学系.医用画像情報科学])
    役割 任意
    貢献度 任意
    学籍番号 推奨
  4. 福田 大受([徳島大学.大学院医歯薬学研究部.医学域.医科学部門.内科系.循環器内科学])
    役割 任意
    貢献度 任意
    学籍番号 推奨
  5. 山田 博胤([徳島大学.大学院医歯薬学研究部.医学域.連携研究部門(医学域).寄附講座系(医学域).地域循環器内科学])
    役割 任意
    貢献度 任意
    学籍番号 推奨
  6. 原田 雅史([徳島大学.大学院医歯薬学研究部.医学域.医科学部門.内科系.放射線医学])
    役割 任意
    貢献度 任意
    学籍番号 推奨
  7. 佐田 政隆([徳島大学.大学院医歯薬学研究部.医学域.医科学部門.内科系.循環器内科学])
    役割 任意
    貢献度 任意
    学籍番号 推奨
題名 必須

(英) A Deep Learning Approach for Assessment of Regional Wall Motion Abnormality From Echocardiographic Images

副題 任意
要約 任意

(英) This study investigated whether a deep convolutional neural network (DCNN) could provide improved detection of regional wall motion abnormalities (RWMAs) and differentiate among groups of coronary infarction territories from conventional 2-dimensional echocardiographic images compared with that of cardiologists, sonographers, and resident readers. An effective intervention for reduction of misreading of RWMAs is needed. The hypothesis was that a DCNN trained using echocardiographic images would provide improved detection of RWMAs in the clinical setting. A total of 300 patients with a history of myocardial infarction were enrolled. From this cohort, 3 groups of 100 patients each had infarctions of the left anterior descending (LAD) artery, the left circumflex (LCX) branch, and the right coronary artery (RCA). A total of 100 age-matched control patients with normal wall motion were selected from a database. Each case contained cardiac ultrasonographs from short-axis views at end-diastolic, mid-systolic, and end-systolic phases. After the DCNN underwent 100 steps of training, diagnostic accuracies were calculated from the test set. Independently, 10 versions of the same model were trained, and ensemble predictions were performed using those versions. For detection of the presence of WMAs, the area under the receiver-operating characteristic curve (AUC) produced by the deep learning algorithm was similar to that produced by the cardiologists and sonographer readers (0.99 vs. 0.98, respectively; p = 0.15) and significantly higher than the AUC result of the resident readers (0.99 vs. 0.90, respectively; p = 0.002). For detection of territories of WMAs, the AUC by the deep learning algorithm was similar to the AUC by the cardiologist and sonographer readers (0.97 vs. 0.95, respectively; p = 0.61) and significantly higher than the AUC by resident readers (0.97 vs. 0.83, respectively; p = 0.003). From a validation group at an independent site (n = 40), the AUC by the deep learning algorithm was 0.90. The present results support the possibility of using DCNN for automated diagnosis of RWMAs in the field of echocardiography.

キーワード 推奨
発行所 推奨
誌名 必須 JACC. Cardiovascular Imaging(American College of Cardiology)
(pISSN: 1936-878X, eISSN: 1876-7591)
ISSN 任意 1876-7591
ISSN: 1936-878X (pISSN: 1936-878X, eISSN: 1876-7591)
Title: JACC. Cardiovascular imaging
Title(ISO): JACC Cardiovasc Imaging
Publisher: American College of Cardiology
 (NLM Catalog  (Scopus  (CrossRef (Scopus information is found. [need login])
必須 13
必須 2
必須 374 381
都市 任意
年月日 必須 2019年 5月 15日
URL 任意
DOI 任意 10.1016/j.jcmg.2019.02.024    (→Scopusで検索)
PMID 任意 31103590    (→Scopusで検索)
NAID 任意
WOS 任意
Scopus 任意 2-s2.0-85070068493
評価値 任意
被引用数 任意
指導教員 推奨
備考 任意
  1. (英) Article.ELocationID: S1936-878X(19)30318-3

  2. (英) Article.ELocationID: 10.1016/j.jcmg.2019.02.024

  3. (英) Article.PublicationTypeList.PublicationType: Journal Article

  4. (英) KeywordList.Keyword: artificial intelligence

  5. (英) KeywordList.Keyword: diagnostic ability

  6. (英) KeywordList.Keyword: echocardiography

  7. (英) KeywordList.Keyword: regional wall motion abnormality