著作: [長澤 利彦]/Tabuchi Hitoshi/Masumoto Hiroki/仁木 昌徳/Ohsugi Hideharu/[三田村 佳典]/Accuracy of deep learning, a machine learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting idiopathic macular holes/[PeerJ]
ヘルプを読む
「著作」(著作(著書,論文,レター,国際会議など))は,研究業績にかかる著作(著書,論文,レター,国際会議など)を登録するテーブルです. (この情報が属するテーブルの詳細な定義を見る)
- 項目名の部分にマウスカーソルを置いて少し待つと,項目の簡単な説明がツールチップ表示されます.
種別 | 必須 | 学術論文(審査論文) | |||
---|---|---|---|---|---|
言語 | 必須 | 英語 | |||
招待 | 推奨 | ||||
審査 | 推奨 | ||||
カテゴリ | 推奨 | ||||
共著種別 | 推奨 | ||||
学究種別 | 推奨 | ||||
組織 | 推奨 | ||||
著者 | 必須 | ||||
題名 | 必須 |
(英) Accuracy of deep learning, a machine learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting idiopathic macular holes |
|||
副題 | 任意 | ||||
要約 | 任意 |
(英) We aimed to investigate the detection of idiopathic macular holes (MHs) using ultra-wide-field fundus images (Optos) with deep learning, which is a machine learning technology. The study included 910 Optos color images (715 normal images, 195 MH images). Of these 910 images, 637 were learning images (501 normal images, 136 MH images) and 273 were test images (214 normal images and 59 MH images). We conducted training with a deep convolutional neural network (CNN) using the images and constructed a deep-learning model. The CNN exhibited high sensitivity of 100% (95% confidence interval CI [93.5-100%]) and high specificity of 99.5% (95% CI [97.1-99.9%]). The area under the curve was 0.9993 (95% CI [0.9993-0.9994]). Our findings suggest that MHs could be diagnosed using an approach involving wide angle camera images and deep learning. |
|||
キーワード | 推奨 | ||||
発行所 | 推奨 | ||||
誌名 | 必須 |
PeerJ(PeerJ Inc.)
(eISSN: 2167-8359)
|
|||
巻 | 必須 | 6 | |||
号 | 必須 | ||||
頁 | 必須 | e5696 e5696 | |||
都市 | 任意 | ||||
年月日 | 必須 | 2018年 10月 22日 | |||
URL | 任意 | ||||
DOI | 任意 | 10.7717/peerj.5696 (→Scopusで検索) | |||
PMID | 任意 | 30370184 (→Scopusで検索) | |||
CRID | 任意 | ||||
WOS | 任意 | ||||
Scopus | 任意 | ||||
評価値 | 任意 | ||||
被引用数 | 任意 | ||||
指導教員 | 推奨 | ||||
備考 | 任意 |
|