徳島大学 教育・研究者情報データベース(EDB)

Education and Research Database (EDB), Tokushima University

徳島大学ウェブサイトへのリンク

著作: [松本 和幸]/[任 福継]/[吉田 稔]/[北 研二]/異なるメディアのレビューデータの転移学習に基づく評価スコア推定/[International Journal of Advanced Intelligence (IJAI)]

ヘルプを読む

「著作」(著作(著書,論文,レター,国際会議など))は,研究業績にかかる著作(著書,論文,レター,国際会議など)を登録するテーブルです. (この情報が属するテーブルの詳細な定義を見る)

  • 項目名の部分にマウスカーソルを置いて少し待つと,項目の簡単な説明がツールチップ表示されます.

この情報をEDB閲覧画面で開く

EID
337698
EOID
998450
Map
0
LastModified
2021年1月13日(水) 15:06:08
Operator
三好 小文
Avail
TRUE
Censor
0
Owner
松本 和幸
Read
継承
Write
継承
Delete
継承
種別 必須 学術論文(審査論文)
言語 必須 英語
招待 推奨
審査 推奨 Peer Review
カテゴリ 推奨 研究
共著種別 推奨 学内共著(徳島大学内研究者との共同研究 (学外研究者を含まない))
学究種別 推奨
組織 推奨
著者 必須
  1. 松本 和幸([徳島大学.大学院社会産業理工学研究部.理工学域.知能情報系.情報工学分野]/[徳島大学.理工学部.理工学科.情報光システムコース.情報工学講座])
    役割 任意
    貢献度 任意
    学籍番号 推奨
  2. 任 福継([徳島大学.大学院社会産業理工学研究部.理工学域.知能情報系.情報工学分野]/[徳島大学.理工学部.理工学科.情報光システムコース.情報工学講座]/->個人[中川 福継])
    役割 任意
    貢献度 任意
    学籍番号 推奨
  3. 吉田 稔([徳島大学.大学院社会産業理工学研究部.理工学域.知能情報系.情報工学分野]/[徳島大学.理工学部.理工学科.情報光システムコース.情報工学講座])
    役割 任意
    貢献度 任意
    学籍番号 推奨
  4. 北 研二([徳島大学.大学院社会産業理工学研究部.理工学域.知能情報系.情報工学分野]/[徳島大学.理工学部.理工学科.情報光システムコース.情報工学講座])
    役割 任意
    貢献度 任意
    学籍番号 推奨
題名 必須

(英) Review Score Estimation Based on Transfer Learning of Different Media Review Data

(日) 異なるメディアのレビューデータの転移学習に基づく評価スコア推定

副題 任意
要約 任意

(英) We propose a model to classify reviews based on review data from different media sources. Recently, research has been actively conducted on transfer learning between different domains with various kinds of big data as the target. The fact that evaluation expressions often vary in different domains presents a barrier to reputation analysis. Users commonly use various linguistic expressions to refer to creative works, depending on the specific media form.For example, the terms or expressions used in anime to describe creative works within that medium are different from the expressions used in comics, or games or movies. These differences can be considered as features of each individual medium. We should expect, then, that there would be differences in evaluation expressions among the various media, as well. We analyze the effects of such differences on classification accuracy by conducting transfer learning between review data from different media and demonstrate compatibility between the original (pre-transfer) and target (post-transfer) media by constructing a review classification model. As a result of our evaluation experiments, we are able to more accurately estimate review scores without using SO-Scores for training review fragments based on Long Short-Term Memory (LSTM) rather than using a method based on SO-Scores.

(日) 本研究では,異なるメディアのレビューデータに基づいたレビュー分類モデルの構築を提案します.現在,多種多様なビッグデータを対象とした異なるドメイン間での転移学習に関する研究が盛んである.異なるドメイン間では,評価表現が異なることが多く,評判分析の障壁となる.異なるメディアにおける著作物に触れているユーザが異なる表現を使用することは多い.たとえば,著作物に関して,「アニメ」や「漫画」,「ゲーム」,「映画」など,異なるメディアにおいては異なる用語や表現が存在する.評価表現以外にもメディアの違いの特徴が表れると考えられる.我々はメディア間でのレビューデータの転移学習をおこなうことで,こうした違いが分類精度にどんな影響を及ぼすかについて分析した.本研究では,著作物の媒体ごとに,転移先と転移元のメディアの相性について,レビューの評価分類モデルを構築することで明らかにした.また,評価実験の結果,Long Short Term Memoryを用いて,レビュー片の学習においてSo-Scoreを用いずに,SO-Scoreに基づく手法よりも正確に評価スコアの推定をおこなえた.

キーワード 推奨
  1. (英) review classification / (日) レビュー分類
  2. (英) transfer learning / (日) 転移学習
  3. (英) Long Short-Term Memory
  4. (英) different media
発行所 推奨
誌名 必須 International Journal of Advanced Intelligence (IJAI)(AIA International Advanced Information Institute)
(pISSN: 1883-3918)
ISSN 任意 1883-3918
必須 9
必須 4
必須 541 555
都市 任意
年月日 必須 2017年 12月 28日
URL 任意 http://aia-i.com/ijai/contents.html
DOI 任意
PMID 任意
NAID 任意 120006627857
WOS 任意
Scopus 任意
評価値 任意
被引用数 任意
指導教員 推奨
備考 任意