徳島大学 教育・研究者情報データベース(EDB)

Education and Research Database (EDB), Tokushima University

徳島大学ウェブサイトへのリンク

著作: [永田 裕一]/局所的多様性の損失を考慮した評価関数を用いたGAのTSPへの適用,/[人工知能学会論文誌]

ヘルプを読む

「著作」(著作(著書,論文,レター,国際会議など))は,研究業績にかかる著作(著書,論文,レター,国際会議など)を登録するテーブルです. (この情報が属するテーブルの詳細な定義を見る)

  • 項目名の部分にマウスカーソルを置いて少し待つと,項目の簡単な説明がツールチップ表示されます.

この情報をEDB閲覧画面で開く

EID
288332
EOID
1037475
Map
0
LastModified
2022年5月5日(木) 20:24:03
Operator
[ADMIN]
Avail
TRUE
Censor
0
Owner
永田 裕一
Read
継承
Write
継承
Delete
継承
種別 必須 学術論文(審査論文)
言語 必須 日本語
招待 推奨
審査 推奨
カテゴリ 推奨 研究
共著種別 推奨
学究種別 推奨
組織 推奨
著者 必須
  1. 永田 裕一([徳島大学.大学院社会産業理工学研究部.理工学域.知能情報系.情報工学分野]/[徳島大学.理工学部.理工学科.知能情報コース.情報工学講座])
    役割 任意
    貢献度 任意
    学籍番号 推奨
題名 必須

(英) New Approach of a Genetic Algorithm for TSP Using the Evaluation Function Considering Local Diversity Loss

(日) 局所的多様性の損失を考慮した評価関数を用いたGAのTSPへの適用,

副題 任意
要約 任意

(英) The edge assembly crossover (EAX) is considered the best available crossover for traveling salesman problems (TSPs). In this paper, a modified EAX algorithm is proposed. The key idea is to maintain population diversity by eliminating any exchanges of edges by the crossover that does not contribute to an improved evaluation value. For this, a new evaluation function is designed considering local diversity loss of the population. The proposed method is applied to several benchmark instances with up to 4461 cities. Experimental results show that the proposed method works better than other genetic algorithms using other improvements of the EAX. The proposed method can reach optimal solutions for most benchmark instances with up to 2392 cities with probabilities higher than 90%. For an instance called fnl4461, this method can reach an optimal solution with probability 60% when the population size is set to 300 -- an extremely small population compared to that needed in previous studies.

(日) The edge assembly crossover (EAX) is considered the best available crossover for traveling salesman problems (TSPs). In this paper, a modified EAX algorithm is proposed. The key idea is to maintain population diversity by eliminating any exchanges of edges by the crossover that does not contribute to an improved evaluation value. For this, a new evaluation function is designed considering local diversity loss of the population. The proposed method is applied to several benchmark instances with up to 4461 cities. Experimental results show that the proposed method works better than other genetic algorithms using other improvements of the EAX. The proposed method can reach optimal solutions for most benchmark instances with up to 2392 cities with probabilities higher than 90%. For an instance called fnl4461, this method can reach an optimal solution with probability 60% when the population size is set to 300 -- an extremely small population compared to that needed in previous studies.

キーワード 推奨
  1. (英) genetic algorithm
  2. (英) TSP / (日) EAX
  3. (英) EAX / (日) local diversity loss
  4. (英) local diversity loss / (日) evaluation function
  5. (英) evaluation function
発行所 推奨 (英) The Japanese Society for Artificial Intelligence / (日) 人工知能学会
誌名 必須 人工知能学会論文誌([社団法人 人工知能学会])
(pISSN: 1346-0714, eISSN: 1346-8030)
ISSN 任意 1346-0714
ISSN: 1346-0714 (pISSN: 1346-0714, eISSN: 1346-8030)
Title: Transactions of the Japanese Society for Artificial Intelligence = Jinko Chino Gakkai ronbunshi
Title(ISO): Trans Jpn Soc Artif Intell
Supplier: 一般社団法人 人工知能学会
Publisher: Japanese Society for Artificial Intelligence
 (NLM Catalog  (J-STAGE  (Scopus  (CrossRef (Scopus information is found. [need login])
必須 21
必須 2
必須 195 204
都市 任意
年月日 必須 2006年 2月 初日
URL 任意 http://ci.nii.ac.jp/naid/10022006211/
DOI 任意 10.1527/tjsai.21.195    (→Scopusで検索)
PMID 任意
CRID 任意 1390282680083497216
NAID 10022006211
WOS 任意
Scopus 任意 2-s2.0-32044441664
評価値 任意
被引用数 任意
指導教員 推奨
備考 任意