徳島大学 教育・研究者情報データベース(EDB)

Education and Research Database (EDB), Tokushima University

徳島大学ウェブサイトへのリンク

授業概要: 2011/確率統計学

ヘルプを読む

「授業概要」(授業概要のリスト)は,授業の概要を登録するテーブルです. (この情報が属するテーブルの詳細な定義を見る)

  • 項目名の部分にマウスカーソルを置いて少し待つと,項目の簡単な説明がツールチップ表示されます.

この情報をEDB閲覧画面で開く

EID
215719
EOID
551520
Map
[2011/確率統計学]
LastModified
2011年1月10日(月) 17:14:22
Operator
森賀 俊広
Avail
TRUE
Censor
0
Owner
[教務委員会委員]/[徳島大学.工学部.工学基礎教育センター]
Read
継承
Write
継承
Delete
継承
種別 必須 工学部•昼間 (授業概要)
入学年度 必須 西暦 2011年 (平成 23年)
名称 必須 (英) Probability and Statistics / (日) 確率統計学 / (読) かくりつとうけいがく
コース 必須
  1. 2011/[徳島大学.工学部.化学応用工学科]/[昼間コース]
担当教員 必須
  1. 今井 仁司
    肩書 任意
単位 必須 2
目的 必須

(日) 確率的な現象の捉え方,考え方を学ぶとともにデータを処理する際 に使われる統計手法を習得することを目標とする.

概要 必須

(日) 初めて数理統計を学ぶ初学者のために統計資料の整理から始めて, その資料の特徴の解析,さらに確率論の基礎と小数標本論の初歩を解説する.

キーワード 推奨
  1. 平均(mean)
  2. 分散(variance)
  3. (日) 回帰直線
  4. 二項分布(binomial distribution)
  5. 正規分布(normal distribution)
先行科目 推奨
  1. 基礎数学/微分積分学Ⅰ([2011/[徳島大学]/基礎科目群/[共通教育]])
    必要度 任意
  2. 基礎数学/微分積分学Ⅱ([2011/[徳島大学]/基礎科目群/[共通教育]])
    必要度 任意
関連科目 推奨
要件 任意

(日) 「微分積分学」の履修を前提とする.

注意 任意

(日) 講義内容を確実に理解するには,予習を行い,講義ノートをきちんととり,講義時間内に設けられた演習に積極的に取り組むこと.それ以上 に,各自が普段から自主的に演習に取り組むこと. 授業を受ける際には,2時間の授業時間毎に2 時間の予習と2 時間の復習をしたうえで授業を受けることが,授業の理解と単位取得のために必要である.

目標 必須
  1. (日) 基本的な分布関数についての理解

  2. (日) 相関関係についての理解

計画 必須
  1. (日) 変量と平均

  2. (日) 分散,標準偏差

  3. (日) チェビシェフの定理

  4. (日) 相関関係,回帰直線

  5. (日) 相関係数

  6. (日) 数学的確率

  7. (日) 加法定理

  8. (日) 乗法定理

  9. (日) 基本的分布関数

  10. (日) 平均の性質

  11. (日) 二項分布

  12. (日) ポワソン分布

  13. (日) 正規分布Ⅰ

  14. (日) 正規分布Ⅱ

  15. (日) 中心極限定理

  16. (日) 期末試験

評価 必須

(日) 期末試験の点数が60点以上もしくは49点以下であれば,その点数を成績とする.期末試験の点数が50∼59点の場合には,試験の点数を80%にしたものと平常点(講義と演習の取り組み具合を評価したもので20 点満点)を合計した点数(ただし,その点数が60点以上であれば60点とする)を成績とする.

JABEE合格 任意

(日) 単位の取得をもってJABEE合格とする.

JABEE関連 任意

(日) 本学科教育目標(C: ◎)に対応する

対象学生 任意

(日) 開講コース学生のみ履修可能

データベース中に適合する可能性のある以下の情報を発見しました
[履修範囲] 開講コース学生のみ履修可能
教科書 必須
  1. (日) 高遠節夫・斎藤斉他『新訂 確率統計』大日本図書

参考資料 推奨
  1. (日) 青木利夫,吉原健一『統計学要論』培風館

  2. (日) 越昭三『数理総計概論』学術図書出版社

URL 任意
連絡先 推奨
  1. (日) 今井(A棟 220,088-656-7541,携帯電話やE-mail での問い合わせは受け付けない)
    オフィスアワー 任意

    (日) オフィスアワー:木曜 14:00∼15:00

科目コード 推奨
備考 任意

この色で表示されている項目はマップによって参照された内容です